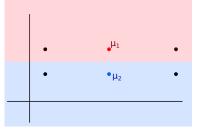
Data Science C - Page 1

Answer Key

1. <u>F</u>	3. <u>I</u>	5. <u> </u>	7. <u>E</u>	9. <u>B</u>
2. <u>J</u>	4. <u>D</u>	6. <u>H</u>	8. <u>A</u>	10. <u> </u>
11. <u>B</u>	15. <u>A</u>	19. <u>D</u>	23. <u>B</u>	27. <u>A</u>
12. <u>A</u>	16. <u> </u>	20. <u>B</u>	24. <u>D</u>	28. <u>B</u>
13. <u>C</u>	17. <u> </u>	21. <u> </u>	25. <u>B</u>	29. <u>B</u>
14. <u>D</u>	18. <u> </u>	22. <u>A</u>	26. <u>D</u>	30. <u>B</u>


31. (a) 90% confidence interval yields a z-value of 1.645. The interval is then given by $\mu \pm \frac{z\sigma}{\sqrt{n}}$. Final answer: 37.7 ± 1.5 or 36.2 to 39.2 (2pt). We are 90% sure that the true mean number of players lies within this interval (2pt).

(b) 145 more samples (245 total). Will accept ± 5 samples.

32. (a)

$$L = \frac{1}{n} \sum_{n=1}^{n} (y - (mx + b))^2$$

- (b) $m = 0.8 \pm 0.2$ (2pt), $b = 20 \pm 10$ (2pt)
- (c) Square it (1pt). It estimates the fraction of the variance in Y that is explained by its relation to X (2pt).
- 33. Many answers accepted. Sample shown below. The blue and red regions are the final clusters, the μ_i are the means at their converged values. Because the algorithm minimizes distances within clusters, this situation is at a local minimum and cannot converge to the global minimum (i.e. clustering the left points together and the right points together):

- 34. (a) Supervised (1pt). It's performing a regression task, so it needs labelled data (1pt).
 - (b) L2 loss (mean squared error) or L1 loss (mean absolute error)
 - (c) i. Independent variables: learned parameters. Dependent variable: loss.
 - ii. A possible state of the neural network.
 - iii. Since the loss landscape of the training set is only an approximation of the "true" loss landscape, the model can converge to a minimum in the training landscape which isn't a minimum in the "true" landscape.
 - (d) No, CNNs are effective for vision tasks (since they preserve locality and involve learning filters) and other tasks where the features have geometric structure. Here, the features don't have geometric structure.